organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(6a*R*,10a*R*)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-1-yl 4-methylbenzenesulfonate

Waseem Gul,^{a,b} Paulo Carvalho,^c David W. Berberich,^d Mitchell A. Avery^{c,e,f} and Mahmoud A. ElSohly^{b,g}*

^aNational Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA, ^bEl Sohly Laboratories Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA, ^cThe University of Mississippi, Department of Medicinal Chemistry, 417 Faser Hall, University, MS 38677, USA, ^dCovidien, 3600 N. 2nd Street, St Louis, MO 63147, USA, ^eNational Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA, ^fDepartment of Chemistry and Biochemistry, The University of Mississippi, University, MS 38677, USA, and ⁸National Center for Natural Products Research, Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA Correspondence e-mail: elsohly@elsohly.com

Received 15 May 2008; accepted 14 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.027; wR factor = 0.069; data-to-parameter ratio = 15.1.

In the crystal structure of the title compound, $C_{28}H_{36}O_4S$, the *p*-tolyl ring is inclined at 35.8° to the aromatic ring. The cyclohexene ring adopts a boat conformation and the heterocyclic ring is in a slightly distorted screw boat conformation.

Related literature

For the physiological actions of tetrahydrocannabinol (Δ^9 -THC), the most psychologically active constituent of *Cannabis* sativa, see: Mechoulam & Gaoni (1967). For the synthesis of Δ^9 -THC-tosylate, see: Duchek (2004).

Experimental

Crystal data

C₂₈H₃₆O₄S $M_r = 468.63$ Orthorhombic, $P2_12_12_1$ a = 9.8759 (2) Å b = 13.2996 (2) Å c = 19.1500 (3) Å

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 47731 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.069$ S = 1.044562 reflections 303 parameters H-atom parameters constrained $V = 2515.27 (7) Å^{3}$ Z = 4 Cu K\alpha radiation $\mu = 1.39 \text{ mm}^{-1}$ T = 100 K 0.19 \times 0.17 \times 0.16 mm

4562 independent reflections 4438 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

 $\begin{array}{l} \Delta \rho_{max} = 0.25 \mbox{ e } \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.24 \mbox{ e } \mathring{A}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1965 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.023 \mbox{ (11)} \end{array}$

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Desmond Slade, John R. Duchek and David J. Kimmich for their valuable contributions, and the Center for Disease Control and Prevention, USA, for providing financial assistance (CDC cooperative agreements 1UO1 CI000211-03 and 1UO1 CI000362-01). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program grant No. C06 Rr-14503-01 from the National Center for Research Resources, National Institutes of Health. The project was also supported in part by the National Institute on Drug Abuse, contract No. N01DA-5-7746.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2105).

References

Bruker (2003). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA.
Duchek, J. R. (2004). US Patent No. 2006/0094774-A1.
Flack, H. D. (1983). *Acta Cryst.* A39, 876–881.
Mechoulam, R. & Gaoni, Y. (1967). *Fortschr. Chem. Org. Naturst.* 25, 175–213.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Acta Cryst. (2008). E64, o1686 [doi:10.1107/S1600536808022010]

(6a*R*,10a*R*)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6*H*-benzo[*c*]chromen-1-yl 4-methyl-benzenesulfonate

W. Gul, P. Carvalho, D. W. Berberich, M. A. Avery and M. A. ElSohly

Experimental

 Δ^9 – Tetrahydrocannabinol tosylate (*p*-tosyl- Δ^9 —THC), was synthesized according to Duchek (2004).

Refinement

All H atoms were located in difference maps and treated as riding atoms, with the following distance restraints: C—H = 0.93 Å, U_{iso} =1.2Ueq (C) for Csp₂, C—H = 0.98 Å, U_{iso} = 1.2Ueq (C) for CH, C—H = 0.97 Å, U_{iso} = 1.2Ueq (C) for CH₂, C—H = 0.96 Å, U_{iso} = 1.5Ueq (C) for CH₃.

Figures

Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.

(6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6*H*- benzo[c]chromen-1-yl 4-methylbenzenesulfon-ate

$F_{000} = 1008$
$D_{\rm x} = 1.238 \ {\rm Mg \ m}^{-3}$
Cu K α radiation $\lambda = 1.54178$ Å
Cell parameters from 9942 reflections
$\theta = 4.1 - 67.4^{\circ}$
$\mu = 1.39 \text{ mm}^{-1}$
T = 100 K
Blocks, colourless
$0.19\times0.17\times0.16\ mm$

Data collection

Bruker SMART CCD area-detector diffractometer

4438 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.034$
$\theta_{max} = 68.0^{\circ}$
$\theta_{\min} = 4.1^{\circ}$
$h = -11 \rightarrow 11$
$k = -15 \rightarrow 15$
$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.027$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0429P)^{2} + 0.4744P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.069$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
4562 reflections	$\Delta \rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$
303 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1965 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.023 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional R-factors R are based

on *F*, with *F* set to zero for negative F^2 . The threshold expression of

 $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.46490 (3)	0.05656 (2)	1.076895 (17)	0.01846 (9)
C1	0.47927 (14)	0.18406 (10)	0.97409 (7)	0.0172 (3)
C2	0.47639 (14)	0.28371 (11)	0.99381 (7)	0.0187 (3)
H2	0.5205	0.3046	1.0342	0.022*
C3	0.40657 (14)	0.35294 (11)	0.95249 (7)	0.0186 (3)
C4	0.34101 (15)	0.31759 (11)	0.89315 (7)	0.0189 (3)
H4	0.2911	0.3621	0.8659	0.023*
C7	0.39042 (17)	-0.07962 (11)	0.78957 (8)	0.0262 (3)
H7A	0.3350	-0.1182	0.8216	0.031*
H7B	0.3527	-0.0869	0.7431	0.031*
С9	0.61971 (16)	-0.07895 (11)	0.84941 (8)	0.0244 (3)
C10	0.57509 (15)	-0.00757 (11)	0.89264 (7)	0.0207 (3)
H10	0.6326	0.0152	0.9277	0.025*
C8	0.53477 (18)	-0.11963 (12)	0.79053 (8)	0.0291 (3)
H8A	0.5319	-0.1923	0.7941	0.035*
H8B	0.5780	-0.1029	0.7466	0.035*
C6	0.25642 (15)	0.08708 (11)	0.79805 (8)	0.0213 (3)
C4A	0.34857 (14)	0.21680 (11)	0.87368 (7)	0.0184 (3)
C10A	0.43477 (14)	0.03799 (10)	0.88715 (7)	0.0189 (3)
H10A	0.3732	-0.0034	0.9152	0.023*
C10B	0.42230 (14)	0.14608 (10)	0.91271 (7)	0.0178 (3)
C19	0.40283 (15)	0.14829 (10)	1.13478 (7)	0.0176 (3)
C20	0.47260 (15)	0.16732 (11)	1.19667 (7)	0.0208 (3)
H20	0.5532	0.1340	1.2065	0.025*
C24	0.28354 (15)	0.19860 (11)	1.11914 (7)	0.0199 (3)
H24	0.2371	0.1851	1.0779	0.024*
C21	0.42018 (16)	0.23624 (12)	1.24306 (8)	0.0228 (3)
H21	0.4649	0.2478	1.2850	0.027*
C14	0.40301 (15)	0.46315 (10)	0.97123 (7)	0.0216 (3)
H14A	0.4323	0.4713	1.0193	0.026*
H14B	0.3105	0.4872	0.9679	0.026*
C11	0.13920 (16)	0.05062 (12)	0.84292 (8)	0.0264 (3)
H11A	0.1622	0.0579	0.8914	0.040*
H11B	0.1214	-0.0189	0.8329	0.040*
H11C	0.0600	0.0898	0.8328	0.040*
C23	0.23487 (16)	0.26903 (11)	1.16577 (8)	0.0221 (3)
H23	0.1559	0.3040	1.1551	0.027*
C22	0.30153 (15)	0.28894 (11)	1.22843 (8)	0.0210 (3)
C18	0.5664 (2)	0.77077 (13)	1.03217 (10)	0.0409 (5)
H18A	0.5992	0.8127	0.9951	0.061*
H18B	0.6205	0.7812	1.0732	0.061*
H18C	0.4738	0.7876	1.0422	0.061*
C25	0.24424 (18)	0.36377 (13)	1.27916 (9)	0.0301 (4)
H25A	0.1675	0.3349	1.3025	0.045*
H25B	0.2166	0.4231	1.2544	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H25C	0.3121	0.3812	1.3130	0.045*
C15	0.49335 (15)	0.52705 (10)	0.92386 (8)	0.0227 (3)
H15A	0.4620	0.5208	0.8761	0.027*
H15B	0.5852	0.5013	0.9258	0.027*
C17	0.57512 (18)	0.66107 (12)	1.01015 (9)	0.0293 (4)
H17A	0.5419	0.6191	1.0479	0.035*
H17B	0.6693	0.6438	1.0022	0.035*
C16	0.49424 (17)	0.63855 (11)	0.94437 (8)	0.0260 (3)
H16A	0.5317	0.6773	0.9060	0.031*
H16B	0.4016	0.6606	0.9513	0.031*
C12	0.21926 (17)	0.08792 (12)	0.72084 (8)	0.0273 (3)
H12A	0.1454	0.1336	0.7133	0.041*
H12B	0.1928	0.0215	0.7067	0.041*
H12C	0.2961	0.1091	0.6939	0.041*
O2	0.55008 (10)	0.11806 (7)	1.01992 (5)	0.0185 (2)
O3	0.56579 (11)	-0.00225 (8)	1.11089 (5)	0.0271 (2)
O4	0.35208 (11)	0.00985 (8)	1.04341 (5)	0.0240 (2)
C13	0.75923 (18)	-0.12306 (14)	0.85622 (9)	0.0344 (4)
H13A	0.8061	-0.0908	0.8940	0.052*
H13B	0.8084	-0.1127	0.8136	0.052*
H13C	0.7523	-0.1938	0.8654	0.052*
C6A	0.38882 (15)	0.03099 (10)	0.81073 (7)	0.0201 (3)
H6A	0.4582	0.0647	0.7827	0.024*
01	0.28074 (11)	0.19339 (8)	0.81346 (5)	0.0207 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.02166 (17)	0.01704 (15)	0.01669 (15)	0.00077 (14)	0.00114 (13)	0.00015 (13)
C1	0.0154 (7)	0.0200 (7)	0.0162 (6)	-0.0006 (6)	0.0033 (5)	0.0013 (5)
C2	0.0174 (7)	0.0236 (7)	0.0149 (6)	-0.0041 (6)	0.0019 (5)	-0.0024 (5)
C3	0.0178 (7)	0.0188 (7)	0.0191 (7)	-0.0019 (6)	0.0064 (5)	-0.0007 (5)
C4	0.0189 (7)	0.0188 (7)	0.0190 (7)	-0.0008 (6)	0.0023 (5)	0.0015 (6)
C7	0.0351 (9)	0.0208 (8)	0.0227 (7)	-0.0001 (7)	-0.0047 (6)	-0.0053 (6)
C9	0.0272 (8)	0.0229 (8)	0.0231 (7)	0.0022 (6)	0.0012 (6)	-0.0001 (6)
C10	0.0240 (7)	0.0203 (7)	0.0177 (6)	0.0003 (6)	-0.0006 (5)	-0.0013 (6)
C8	0.0382 (9)	0.0228 (7)	0.0263 (8)	0.0047 (7)	0.0008 (7)	-0.0079 (6)
C6	0.0252 (8)	0.0166 (7)	0.0221 (7)	-0.0025 (6)	-0.0026 (6)	-0.0028 (5)
C4A	0.0174 (7)	0.0215 (7)	0.0162 (7)	-0.0024 (6)	0.0029 (5)	-0.0014 (5)
C10A	0.0221 (7)	0.0184 (7)	0.0161 (6)	-0.0019 (6)	0.0006 (5)	-0.0014 (5)
C10B	0.0172 (7)	0.0182 (7)	0.0179 (7)	-0.0019 (5)	0.0027 (5)	-0.0010 (5)
C19	0.0195 (7)	0.0185 (7)	0.0148 (6)	-0.0010 (6)	0.0024 (5)	0.0011 (5)
C20	0.0174 (7)	0.0258 (7)	0.0193 (7)	0.0010 (6)	-0.0017 (6)	0.0014 (5)
C24	0.0197 (7)	0.0230 (7)	0.0169 (7)	-0.0010 (6)	-0.0026 (6)	0.0006 (5)
C21	0.0223 (8)	0.0286 (8)	0.0175 (7)	-0.0048 (6)	-0.0032 (6)	-0.0024 (6)
C14	0.0220 (7)	0.0203 (7)	0.0225 (7)	-0.0008 (6)	0.0022 (6)	-0.0038 (5)
C11	0.0233 (8)	0.0255 (7)	0.0303 (8)	-0.0017 (7)	-0.0014 (6)	-0.0008 (6)
C23	0.0197 (7)	0.0242 (7)	0.0225 (7)	0.0039 (6)	-0.0001 (6)	0.0031 (6)

~ • •						
C22	0.0224 (8)	0.0187 (7)	0.0220 (7)	-0.0032 (6)	0.0024 (6)	0.0006 (6)
C18	0.0586 (13)	0.0257 (8)	0.0384 (10)	-0.0098 (8)	0.0003 (9)	-0.0062 (7)
C25	0.0326 (9)	0.0304 (8)	0.0273 (8)	0.0026 (7)	-0.0007 (7)	-0.0070 (7)
C15	0.0264 (7)	0.0193 (7)	0.0224 (7)	-0.0013 (6)	0.0000 (6)	-0.0009 (6)
C17	0.0332 (9)	0.0217 (8)	0.0329 (9)	-0.0040 (7)	-0.0023 (7)	-0.0014 (6)
C16	0.0321 (9)	0.0176 (7)	0.0284 (8)	-0.0006 (6)	-0.0016 (6)	0.0021 (6)
C12	0.0336 (9)	0.0248 (7)	0.0235 (8)	0.0005 (7)	-0.0070 (6)	-0.0050 (6)
O2	0.0180 (5)	0.0210 (5)	0.0164 (5)	0.0007 (4)	0.0003 (4)	-0.0004 (4)
O3	0.0329 (6)	0.0244 (5)	0.0242 (5)	0.0065 (5)	0.0008 (4)	0.0025 (4)
O4	0.0277 (6)	0.0222 (5)	0.0220 (5)	-0.0061 (4)	0.0039 (4)	-0.0029 (4)
C13	0.0325 (9)	0.0362 (9)	0.0346 (9)	0.0108 (7)	0.0016 (7)	-0.0088 (7)
C6A	0.0232 (8)	0.0195 (7)	0.0175 (7)	-0.0032 (6)	0.0007 (6)	-0.0031 (5)
O1	0.0271 (5)	0.0172 (5)	0.0179 (5)	-0.0009 (4)	-0.0047 (4)	-0.0017 (4)

Geometric parameters (Å, °)

S1—O3	1.4243 (11)	С20—Н20	0.9300
S1—O4	1.4277 (11)	C24—C23	1.380 (2)
S1—O2	1.6022 (10)	C24—H24	0.9300
S1—C19	1.7586 (14)	C21—C22	1.394 (2)
C1—C2	1.3783 (19)	C21—H21	0.9300
C1—C10B	1.3976 (19)	C14—C15	1.5301 (19)
C1—O2	1.4247 (17)	C14—H14A	0.9700
C2—C3	1.396 (2)	C14—H14B	0.9700
С2—Н2	0.9300	C11—H11A	0.9600
C3—C4	1.390 (2)	C11—H11B	0.9600
C3—C14	1.5095 (19)	C11—H11C	0.9600
C4—C4A	1.393 (2)	C23—C22	1.394 (2)
C4—H4	0.9300	С23—Н23	0.9300
C7—C8	1.522 (2)	C22—C25	1.501 (2)
C7—C6A	1.5260 (19)	C18—C17	1.521 (2)
С7—Н7А	0.9700	C18—H18A	0.9600
С7—Н7В	0.9700	C18—H18B	0.9600
C9—C10	1.335 (2)	C18—H18C	0.9600
C9—C13	1.503 (2)	C25—H25A	0.9600
С9—С8	1.506 (2)	C25—H25B	0.9600
C10-C10A	1.516 (2)	С25—Н25С	0.9600
С10—Н10	0.9300	C15—C16	1.5341 (19)
C8—H8A	0.9700	C15—H15A	0.9700
C8—H8B	0.9700	C15—H15B	0.9700
C6—O1	1.4643 (17)	C17—C16	1.521 (2)
C6—C11	1.521 (2)	C17—H17A	0.9700
C6—C12	1.523 (2)	С17—Н17В	0.9700
C6—C6A	1.525 (2)	C16—H16A	0.9700
C4A—O1	1.3694 (17)	С16—Н16В	0.9700
C4A—C10B	1.405 (2)	C12—H12A	0.9600
C10A—C10B	1.5236 (18)	C12—H12B	0.9600
C10A—C6A	1.5350 (18)	C12—H12C	0.9600
C10A—H10A	0.9800	C13—H13A	0.9600

C10 C24	1 388 (2)	C12 H12R	0.9600
C19-C24	1.388 (2)	C13—H13C	0.9000
C20—C21	1 377 (2)	C6A—H6A	0.9800
$O_2 = S_1 = O_4$	120.81 (7)	C_{2}^{2} C_{14}^{14} H_{14A}^{14A}	100 1
03 = 31 = 04	120.81(7)	C_{3} C_{14} H_{14A}	109.1
03-51-02	102.96 (6)	C15C14H14A	109.1
04-51-02	109.03 (6)	C3—C14—H14B	109.1
03-81-019	109.68 (7)	C15C14H14B	109.1
04—S1—C19	108.24 (7)	H14A—C14—H14B	107.8
O2—S1—C19	104.96 (6)	C6—C11—H11A	109.5
C2—C1—C10B	124.73 (13)	C6—C11—H11B	109.5
C2—C1—O2	115.71 (12)	H11A—C11—H11B	109.5
C10B—C1—O2	119.53 (12)	C6—C11—H11C	109.5
C1—C2—C3	119.27 (13)	H11A—C11—H11C	109.5
C1—C2—H2	120.4	H11B—C11—H11C	109.5
С3—С2—Н2	120.4	C24—C23—C22	121.41 (14)
C4—C3—C2	118.06 (13)	C24—C23—H23	119.3
C4—C3—C14	120.79 (13)	С22—С23—Н23	119.3
C2—C3—C14	121.14 (13)	C21—C22—C23	118.32 (14)
C3—C4—C4A	121.28 (14)	C21—C22—C25	121.34 (14)
C3—C4—H4	119.4	C23—C22—C25	120.32 (14)
C4A—C4—H4	119.4	C17—C18—H18A	109.5
C8—C7—C6A	110.09 (13)	C17—C18—H18B	109.5
С8—С7—Н7А	109.6	H18A—C18—H18B	109.5
С6А—С7—Н7А	109.6	C17—C18—H18C	109.5
С8—С7—Н7В	109.6	H18A—C18—H18C	109.5
С6А—С7—Н7В	109.6	H18B—C18—H18C	109.5
H7A—C7—H7B	108.2	С22—С25—Н25А	109.5
C10—C9—C13	121.77 (15)	С22—С25—Н25В	109.5
C10—C9—C8	122.42 (14)	H25A—C25—H25B	109.5
C13—C9—C8	115.81 (13)	C22—C25—H25C	109.5
C9—C10—C10A	122.90 (14)	H25A—C25—H25C	109.5
C9-C10-H10	118.6	H25B-C25-H25C	109.5
C10A - C10 - H10	118.6	C14 - C15 - C16	112.86 (12)
C_{9} C_{8} C_{7}	113.91 (13)	C_{14} C_{15} H_{15A}	109.0
C_{9} C_{8} H_{8A}	108.8	C16-C15-H15A	109.0
$C_{7} C_{8} H_{8A}$	108.8	C14 C15 H15R	109.0
$C_{1} = C_{2} = H_{2} = H_{2}$	108.8	C14_C15_H15B	109.0
$C_{2} = C_{2} = H_{2}B_{2}$	100.0		109.0
	108.8		107.8
H8A—C8—H8B	10/./		112.87 (14)
01-06-011	108.59 (12)		109.0
01	103.19 (12)		109.0
C11—C6—C12	111.55 (13)	С18—С17—Н17В	109.0
01—C6—C6A	107.43 (11)	С16—С17—Н17В	109.0
C11—C6—C6A	114.00 (12)	H17A—C17—H17B	107.8
C12—C6—C6A	111.40 (12)	C17—C16—C15	113.92 (13)
O1—C4A—C4	114.70 (13)	C17—C16—H16A	108.8
O1—C4A—C10B	123.32 (13)	C15—C16—H16A	108.8
C4—C4A—C10B	121.97 (13)	C17—C16—H16B	108.8
C10-C10A-C10B	115.39 (12)	C15-C16-H16B	108.8

C10-C10A-C6A	108.19 (11)	H16A—C16—H16B	107.7
C10B—C10A—C6A	109.85 (11)	C6—C12—H12A	109.5
C10-C10A-H10A	107.7	C6—C12—H12B	109.5
C10B-C10A-H10A	107.7	H12A—C12—H12B	109.5
C6A—C10A—H10A	107.7	C6—C12—H12C	109.5
C1—C10B—C4A	114.47 (13)	H12A—C12—H12C	109.5
C1-C10B-C10A	125.35 (13)	H12B—C12—H12C	109.5
C4A—C10B—C10A	120.18 (12)	C1—O2—S1	118.44 (8)
C24—C19—C20	121.03 (13)	С9—С13—Н13А	109.5
C24—C19—S1	119.63 (11)	С9—С13—Н13В	109.5
C20—C19—S1	119.31 (11)	H13A—C13—H13B	109.5
C21—C20—C19	118.91 (14)	С9—С13—Н13С	109.5
C21—C20—H20	120.5	H13A—C13—H13C	109.5
С19—С20—Н20	120.5	H13B—C13—H13C	109.5
C23—C24—C19	118.90 (13)	C6—C6A—C7	115.99 (12)
C23—C24—H24	120.5	C6—C6A—C10A	112.07 (12)
C19—C24—H24	120.5	C7—C6A—C10A	107.98 (12)
C20—C21—C22	121.40 (14)	С6—С6А—Н6А	106.8
C20—C21—H21	119.3	С7—С6А—Н6А	106.8
C22—C21—H21	119.3	C10A—C6A—H6A	106.8
C3—C14—C15	112.63 (12)	C4A—O1—C6	118.01 (11)

